Best approximation and optimal location in polyhedral Banach spaces

Libor Veselý

Università degli Studi di Milano
Libor.Vesely@unimi.it

February 20–24, 2012
Convexity in Banach Spaces
A homage to Piero Papini
Castro Urdiales, Spain

Works of P.L.P. on polyhedral Banach spaces:

Work of P.L.P. on optimal location:

Notation

$X \ldots$ real Banach space, $Y \subset X \ldots$ closed subspace

For $x \in X$ consider the nearest point set

$$P_Y(x) = \{ y \in Y : \|x - y\| = d(x, Y) \}.$$
Notation

X . . . real Banach space, $Y \subset X$. . . closed subspace

For $x \in X$ consider the nearest point set

$$P_Y(x) = \{y \in Y : \|x - y\| = d(x, Y)\}.$$

$P_Y : X \to 2^Y$ (metric projection)

$\text{dom}(P_Y) = \{x \in X : P_Y(x) \neq \emptyset\}$ (effective domain of P_Y)
Hausdorff upper and lower semicontinuity

$T \ldots$ topological space, $Z \ldots$ normed space, $t_0 \in T$, $F: T \rightarrow 2^Z$
Hausdorff upper and lower semicontinuity

T ... topological space, Z ... normed space, $t_0 \in T$, $F : T \to 2^Z$

F is Hausdorff u.s.c. (H-u.s.c.) at t_0 if

$$\forall \varepsilon > 0 \exists V \in \mathcal{U}(t_0) : F(t) \subset F(t_0) + \varepsilon B_0^Z$$

whenever $t \in V$.

Observation

u.s.c. \Rightarrow H-u.s.c.; H-l.s.c. \Rightarrow l.s.c.;

$[\text{H-u.s.c.} + \text{H-l.s.c.}] \iff$ contin. in the Hausdorff (pseudo)metric.
Hausdorff upper and lower semicontinuity

$T \ldots$ topological space, $Z \ldots$ normed space, $t_0 \in T$, $F : T \to 2^Z$

F is *Hausdorff u.s.c.* (H-u.s.c.) at t_0 if

$$\forall \varepsilon > 0 \ \exists V \in \mathcal{U}(t_0) : F(t) \subset F(t_0) + \varepsilon B_0^Z \text{ whenever } t \in V.$$

F is *Hausdorff l.s.c.* (H-l.s.c.) at t_0 if

$$\forall \varepsilon > 0 \ \exists V \in \mathcal{U}(t_0) : F(t_0) \subset F(t) + \varepsilon B_0^Z \text{ whenever } t \in V.$$
Hausdorff upper and lower semicontinuity

\(T \ldots \text{topological space}, \ Z \ldots \text{normed space}, \ t_0 \in T, \ F : T \to 2^Z \)

\(F \) is Hausdorff u.s.c. (H-u.s.c.) at \(t_0 \) if

\[\forall \varepsilon > 0 \ \exists V \in \mathcal{U}(t_0) : F(t) \subset F(t_0) + \varepsilon B_0^Z \text{ whenever } t \in V. \]

\(F \) is Hausdorff l.s.c. (H-l.s.c.) at \(t_0 \) if

\[\forall \varepsilon > 0 \ \exists V \in \mathcal{U}(t_0) : F(t_0) \subset F(t) + \varepsilon B_0^Z \text{ whenever } t \in V. \]

Observation

u.s.c. \(\Rightarrow \) H-u.s.c.; H-l.s.c. \(\Rightarrow \) l.s.c.;

\[\text{[H-u.s.c. + H-l.s.c.] } \iff \text{contin. in the Hausdorff (pseudo)metric.} \]
\[F \text{ is l.s.c. at } t_0 \; \iff \quad \forall \varepsilon > 0 \; \forall z_0 \in F(t_0) \; \exists V = V(\varepsilon, z_0) \in \mathcal{U}(t_0): \quad F(t) \cap B^0(z_0, \varepsilon) \neq \emptyset \quad (t \in V). \]

\[F \text{ is H-l.s.c. at } t_0 \; \iff \quad \forall \varepsilon > 0 \; \exists V = V(\varepsilon) \in \mathcal{U}(t_0): \quad F(t) \cap B^0(z_0, \varepsilon) \neq \emptyset \quad (t \in V, \; z_0 \in F(t_0)). \]
Polyhedrality

A Banach space X is *polyhedral* if the unit ball of each of its finite-dimensional (equivalently, two-dimensional) subspaces is a polytope. We shall write: X has (P).

Obvious: (P) is hereditary to subspaces.

A canonical example: (any subspace of) any $c_0(\Gamma)$ space is polyhedral. Easy exercise: the sequence space c_0 is not polyhedral. (But it is isomorphically polyhedral.)
Polyhedrality

A Banach space X is \textit{polyhedral} if the unit ball of each of its finite-dimensional (equivalently, two-dimensional) subspaces is a polytope. We shall write: X has (P).

Obvious: (P) is hereditary to subspaces.
Polyhedrality

A Banach space X is polyhedral if the unit ball of each of its finite-dimensional (equivalently, two-dimensional) subspaces is a polytope. We shall write: X has (P).

Obvious: (P) is hereditary to subspaces.

A canonical example:

(any subspace of) any $c_0(\Gamma)$ space is polyhedral.
Polyhedrality

A Banach space X is polyhedral if the unit ball of each of its finite-dimensional (equivalently, two-dimensional) subspaces is a polytope. We shall write: X has (P).

Obvious: (P) is hereditary to subspaces.

A canonical example:

(any subspace of) any $c_0(\Gamma)$ space is polyhedral.

Easy exercise: the sequence space c is not polyhedral. (But it is isomorphically polyhedral.)
A boundary for X is a set $B \subset S_{X^*}$ such that $\|x\| = \max_{f \in B} f(x)$ for each $x \in X$. That is,

$$\bigcup_{f \in B} [f^{-1}(1) \cap B_x] = S_X.$$
A boundary for X is a set $B \subset S_{X^*}$ such that $\|x\| = \max_{f \in B} f(x)$ for each $x \in X$. That is,

$$\bigcup_{f \in B} [f^{-1}(1) \cap B_X] = S_X.$$

Theorem (Fonf)

If X has (P), then:

(a) S_X is covered by “true faces” of B_X;
A boundary for X is a set $B \subset S_{X^*}$ such that $\|x\| = \max_{f \in B} f(x)$ for each $x \in X$. That is,

$$\bigcup_{f \in B} [f^{-1}(1) \cap B_X] = S_X .$$

Theorem (Fonf)

If X has (P), then:

(a) S_X is covered by “true faces” of B_X;

(b) X is c_0-saturated (in particular, X contains no infinite-dimensional subspace isomorphic to a dual space);
A boundary for X is a set $\mathcal{B} \subset S_{X^*}$ such that $\|x\| = \max_{f \in \mathcal{B}} f(x)$ for each $x \in X$. That is,

$$\bigcup_{f \in \mathcal{B}} [f^{-1}(1) \cap B_X] = S_X.$$

Theorem (Fonf)

If X has (P), then:

(a) S_X is covered by “true faces” of B_X;

(b) X is c_0-saturated (in particular, X contains no infinite-dimensional subspace isomorphic to a dual space);

(c) X is an Asplund space;
A boundary for X is a set $\mathcal{B} \subset S_{X^*}$ such that $\|x\| = \max_{f \in \mathcal{B}} f(x)$ for each $x \in X$. That is,
\[\bigcup_{f \in \mathcal{B}} [f^{-1}(1) \cap B_X] = S_X. \]

Theorem (Fonf)

If X has (P), then:

(a) S_X is covered by “true faces” of B_X;
(b) X is c_0-saturated (in particular, X contains no infinite-dimensional subspace isomorphic to a dual space);
(c) X is an Asplund space;
(d) $B_{X^*} = \overline{\text{conv} \| \cdot \| \mathcal{B}}$ for every boundary $\mathcal{B} \subset S_{X^*}$.

L. Veselý
Best approximation and opt. location in polyhedral B. spaces
If \(X \) has \((P)\), the set \(B_0 := w^*\text{-exp} \ B_X^* = w^*\text{-str} \exp B_X^* \) is the minimal boundary.

Definition

\(X \) has \((P)\) if there exists a boundary \(B \subset S_X^* \) such that \(f(x) < 1 \) whenever \(x \in S_X^* \) and \(f \) is a \(w^* \)-cluster point of \(B \).

\(X \) has \((P) \Delta\) if \(X \) has \((P)\) and there exists a boundary \(B \subset S_X^* \) such that \(\text{card} \{ b \in B : b(x) = 1 \} \) is finite for each \(x \in S_X^* \).

In both properties, we can equivalently consider the particular boundary \(B = \text{ext} B_X^* \) or, in the class of polyhedral spaces, \(B = B_0 \).

L. Veselý
Best approximation and opt. location in polyhedral B. spaces
If X has (P), the set $\mathcal{B}_0 := w^*-\exp B_{X^*} = w^*-\text{str exp } B_{X^*}$ is the minimal boundary.

Definition

- X has (\ast) if there exists a boundary $\mathcal{B} \subset S_{X^*}$ such that

 $$f(x) < 1$$

 whenever $x \in S_X$ and f is a w^*-cluster point of \mathcal{B}.
If \(X \) has \((P)\), the set \(B_0 := w^*\exp B_{X^*} = w^*\text{str exp } B_{X^*} \) is the minimal boundary.

Definition

- \(X \) has \((\ast)\) if there exists a boundary \(B \subset S_{X^*} \) such that
 \[
 f(x) < 1
 \]
 whenever \(x \in S_X \) and \(f \) is a \(w^*\)-cluster point of \(B \).

- \(X \) has \((P\Delta)\) if \(X \) has \((P)\) and there exists a boundary \(B \subset S_{X^*} \) such that
 \[
 \text{card}\{b \in B : b(x) = 1\} < \infty \quad \text{for each } x \in S_X.
 \]
If \(X \) has \((P) \), the set \(\mathcal{B}_0 := w^*-\exp B_{X^*} = w^*-\text{str exp } B_{X^*} \) is the minimal boundary.

Definition

- \(X \) has \((\ast)\) if there exists a boundary \(\mathcal{B} \subset S_{X^*} \) such that
 \[
 f(x) < 1
 \]
 whenever \(x \in S_X \) and \(f \) is a \(w^*\)-cluster point of \(\mathcal{B} \).

- \(X \) has \((P\Delta)\) if \(X \) has \((P)\) and there exists a boundary \(\mathcal{B} \subset S_{X^*} \) such that
 \[
 \text{card}\{b \in \mathcal{B} : b(x) = 1\} < \infty \quad \text{for each } x \in S_X.
 \]

In both properties, we can equivalently consider the particular boundary \(\mathcal{B} = \text{ext } B_{X^*} \) or, in the class of polyhedral spaces, \(\mathcal{B} = \mathcal{B}_0 \).
Basic implications:

\[[\text{subspace of } c_0(\Gamma)] \Rightarrow (\star) \Rightarrow (P\Delta) \Rightarrow (P) \]
Basic implications:

\[\text{[subspace of } c_0(\Gamma)] \Rightarrow (\ast) \Rightarrow (P\Delta) \Rightarrow (P) \]

For \(\dim(X) < \infty \), they are all equivalent.
Basic implications:

\[[\text{subspace of } c_0(\Gamma)] \Rightarrow (\ast) \Rightarrow (P\Delta) \Rightarrow (P) \not\equiv \not\equiv \not\equiv \]

For \(\dim(X) < \infty \), they are all equivalent.

For \(X \) separable, the properties \((\ast) \), \((P\Delta) \) and \((P) \) are isomorphically equivalent (Fonf).
Basic implications:

\[
[\text{subspace of } c_0(\Gamma)] \Rightarrow (\ast) \Rightarrow (P\Delta) \Rightarrow (P)
\]

For \(\dim(X) < \infty\), they are all equivalent.

For \(X\) separable, the properties (\(\ast\)), (\(P\Delta\)) and (\(P\)) are isomorphically equivalent (Fonf).

The properties (\(\ast\)) and (\(P\Delta\)) are hereditary to closed subspaces.

\(X\) has (\(P\Delta\)) \(\Rightarrow\) \(X\) is quasi-polyhedral, i.e.,

\[
\forall x \in S_X \exists V \in \mathcal{U}(x) \ \forall y \in V \cap S_X : [x, y] \subset S_X.
\]
Theorem ([FLV])

Let Y be a closed subspace of X.

(a) If X has ($P\Delta$), then P_Y is H-l.s.c. on its effective domain.
(In particular, $P_Y|_{\text{dom}(P_Y)}$ admits a continuous selection.)

(b) If X has (\ast), then P_Y is Hausdorff continuous on $\text{dom}(P_Y)$.
Optimal location (generalized centers of finite sets)

Given \(a = (a_1, \ldots, a_n) \in X^n \) and \(f : \mathbb{R}^n_+ \to \mathbb{R} \), we want to minimize \(\phi(x) = f(\|x - a_1\|, \ldots, \|x - a_n\|) \) \((x \in X)\).

\[E(f) = \{ x \in X : \phi(x) = \text{inf}_{X} \phi \} \]

(set of \(f \)-centers of \(a \)).

Definition \(X \) has (GC) if \(E(f(a)) \neq \emptyset \) whenever \(n \in \mathbb{N}, a \in X^n \) and \(f : \mathbb{R}^n_+ \to \mathbb{R} \) is continuous, nondecreasing, coercive.

L. Veselý

Best approximation and opt. location in polyhedral B. spaces
Optimal location (generalized centers of finite sets)

Given $a = (a_1, \ldots, a_n) \in X^n$ and $f : \mathbb{R}_+^n \to \mathbb{R}$, we want to minimize

$$\varphi(x) = f(\|x - a_1\|, \ldots, \|x - a_n\|) \quad (x \in X).$$

$$E_f(a) = \{x \in X : \varphi(x) = \inf \varphi(X)\} \quad \text{(set of } f\text{-centers of } a).$$
Optimal location (generalized centers of finite sets)

Given \(a = (a_1, \ldots, a_n) \in X^n\) and \(f : \mathbb{R}_+^n \to \mathbb{R}\), we want to minimize

\[
\varphi(x) = f(\|x - a_1\|, \ldots, \|x - a_n\|) \quad (x \in X).
\]

\[Ef(a) = \{x \in X : \varphi(x) = \inf \varphi(X)\} \quad \text{(set of } f\text{-centers of } a\text{)}.
\]

Definition

\(X\) has \((GC)\) if

\[
Ef(a) \neq \emptyset
\]

whenever \(n \in \mathbb{N}, a \in X^n\) and \(f : \mathbb{R}_+^n \to \mathbb{R}\) is continuous, nondecreasing, coercive.
Proposition (L.V., 1997)

In the definition of (GC) we can equivalently consider only the functions \(f \) of type

\[
f(t_1, \ldots, t_n) = \max_{1 \leq i \leq n} \alpha_i t_i
\]

with \(\alpha_i > 0 \) for each \(i \).
Proposition (L.V., 1997)

1. In the definition of (GC) we can equivalently consider only the functions f of type

$$f(t_1, \ldots, t_n) = \max_{1 \leq i \leq n} \alpha_i t_i$$

with $\alpha_i > 0$ for each i.

2. The following spaces X have (GC):

- X norm-one complemented in X^{**} (e.g., dual, $L_1(\mu)$);
- $X = c_0(\Gamma)$;
- $X = C_b(T, Z)$ where T is a topological space, $\dim Z < \infty$ and $Z \in \{"strictly convex", "polyhedral", "2-dimensional"\}.$
Simple but key observation:

If $\pi : \mathbb{R}^n \to \mathbb{R}$ is a lattice norm, then

$$\varphi(x) := \pi(\|x - a_1\|, \ldots, \|x - a_n\|) = \|(x, \ldots, x) - (a_1, \ldots, a_n)\|.$$

Thus

$$E_{\pi}(a) = P_D(a)$$

where D is the “diagonal” \{(x, \ldots, x) : x \in X\} \subset (X^n, \| \cdot \|).$
Simple but key observation:

If \(\pi : \mathbb{R}^n \to \mathbb{R} \) is a lattice norm, then

\[
\varphi(x) := \pi(\|x - a_1\|, \ldots, \|x - a_n\|) = \|(x, \ldots, x) - (a_1, \ldots, a_n)\|.
\]

Thus

\[
E_{\pi}(a) \overset{\text{“=”}}{=} P_D(a)
\]

where \(D \) is the “diagonal” \(\{(x, \ldots, x) : x \in X\} \subset (X^n, \| \cdot \|) \).

Key question:

when \((X^n, \| \cdot \|) \) satisfies \((GC)/(P\Delta)/(\ast) \)?
Theorem

Let \((X, \| \cdot \|)\) be a Banach space, \(\pi\) a polyhedral lattice norm on \(\mathbb{R}^n\). Consider \(X^n\) equipped with the norm
\[
\|(x_1, \ldots, x_n)\| = \pi(\|x_1\|, \ldots, \|x_n\|).
\]

1. \(X^n\) has (GC) \(\iff\) \(X\) has (GC).

A norm \(\pi\) on \(\mathbb{R}^n\) is "handy" if:
\[
\forall i \in \{1, \ldots, n\} \forall t \in \mathbb{R}^n \text{ with } t_i = 0 :
\pi(t + \tau e_i) = \pi(t)
\]
whenever \(\tau \in \mathbb{R}\) is sufficiently small.
Theorem

Let \((X, \| \cdot \|)\) be a Banach space, \(\pi\) a polyhedral lattice norm on \(\mathbb{R}^n\). Consider \(X^n\) equipped with the norm
\[
\|(x_1, \ldots, x_n)\| = \pi(\|x_1\|, \ldots, \|x_n\|).
\]

1. \(X^n\) has \((GC)\) \iff \(X\) has \((GC)\).
2. \(X^n\) has \((P)\) \iff \(X\) has \((P)\).

A norm \(\pi\) on \(\mathbb{R}^n\) is "handy" if:
\[
\forall i \in \{1, \ldots, n\} \forall t \in \mathbb{R}^n \text{ with } t_i = 0:\n\pi(t + \tau e_i) = \pi(t) \text{ whenever } \tau \in \mathbb{R} \text{ is sufficiently small}.
\]
Theorem

Let \((X, \| \cdot \|)\) be a Banach space, \(\pi\) a polyhedral lattice norm on \(\mathbb{R}^n\). Consider \(X^n\) equipped with the norm \[\|(x_1, \ldots, x_n)\| = \pi(\|x_1\|, \ldots, \|x_n\|).\]

1. \(X^n\) has (GC) \(\iff\) \(X\) has (GC).
2. \(X^n\) has (P) \(\iff\) \(X\) has (P).
3. \(X^n\) has (PΔ) \(\iff\) \(X\) has (PΔ) and: either \(\dim X < \infty\) or \(\pi\) is “handy”.

L. Veselý
Best approximation and opt. location in polyhedral B. spaces
Let \((X, \| \cdot \|)\) be a Banach space, \(\pi\) a polyhedral lattice norm on \(\mathbb{R}^n\). Consider \(X^n\) equipped with the norm
\[
\|(x_1, \ldots, x_n)\| = \pi(\|x_1\|, \ldots, \|x_n\|).
\]

1. \(X^n\) has (GC) \iff \(X\) has (GC).
2. \(X^n\) has (P) \iff \(X\) has (P).
3. \(X^n\) has (PΔ) \iff \(X\) has (PΔ) and: either \(\dim X < \infty\) or \(\pi\) is "handy".
4. \(X^n\) has (*) \iff \(X\) has (*) and: either \(\dim X < \infty\) or \(\pi\) is "handy".
Theorem

Let \((X, \| \cdot \|)\) be a Banach space, \(\pi\) a polyhedral lattice norm on \(\mathbb{R}^n\). Consider \(X^n\) equipped with the norm
\[
\|(x_1, \ldots, x_n)\| = \pi(\|x_1\|, \ldots, \|x_n\|).
\]

1. \(X^n\) has (GC) \(\iff\) \(X\) has (GC).
2. \(X^n\) has (P) \(\iff\) \(X\) has (P).
3. \(X^n\) has (PΔ) \(\iff\) \(X\) has (PΔ) and: either \(\dim X < \infty\) or \(\pi\) is “handy”.
4. \(X^n\) has (*) \(\iff\) \(X\) has (*) and: either \(\dim X < \infty\) or \(\pi\) is “handy”.

A norm \(\pi\) on \(\mathbb{R}^n\) is “handy” if:

\[
\forall i \in \{1, \ldots, n\} \forall t \in \mathbb{R}^n\text{ with } t_i = 0 : \quad \pi(t + \tau e_i) = \pi(t)
\]
whenever \(\tau \in \mathbb{R}\) is sufficiently small.
Example.
$c_0 \oplus_1 \mathbb{R}$ has neither $(P \Delta)$ nor $(*)$.
Example.

$c_0 \oplus_1 \mathbb{R}$ has neither $(P\Delta)$ nor (\ast).

\textbf{Proposition}

\textit{The classes }(GC), (P), $(P\Delta)$, (\ast)\textit{ are closed under making arbitrary c_0-sums.}
Example.
c_0 \oplus_1 \mathbb{R} \text{ has neither } (P\Delta) \text{ nor } (*).

Proposition

The classes (GC), (P), (P\Delta), (*) are closed under making arbitrary c_0-sums.

Theorem (easy)

Let X have (GC). Let \(\pi \) be a polyhedral lattice norm on \(\mathbb{R}^n \).
Suppose that either \(\dim X < \infty \) or \(\pi \) is “handy”.

1. If X has (P\Delta), then \(E_\pi(\cdot) \) is H-l.s.c. on \(X^n \).
2. If X has (*), then \(E_\pi(\cdot) \) is H-continuous on \(X^n \).
Theorem (generalization to relative centers)

Let Y be a closed subspace of X. For $a \in X^n$ and $f: \mathbb{R}^n_+ \to \mathbb{R}$, consider the set of relative Y-centers ("(f, Y)-centers") of a

$$E_{f,Y}(a) = \{y \in Y : \varphi(y) = \inf \varphi(Y)\}$$

(where $\varphi(x) = f(\|x - a_1\|, \ldots, \|x - a_n\|)$).

Suppose that X has (\ast) and every $a \in X^n$ admits weighted Chebyshev Y-centers for all weights $\alpha \in (0, \infty)^n$. Then:

1. $E_{f,Y}(a) \neq \emptyset$ whenever $a \in X^n$ and f is continuous, nondecreasing and coercive;

2. for each π polyhedral lattice norm on \mathbb{R}^n, the (π, Y)-center map $E_{\pi,Y}(\cdot)$ is H-continuous on X^n.

L. Veselý
Best approximation and opt. location in polyhedral B. spaces
Theorem (easy, too)

If X has (GC) and $(P\Delta)$, then $C_b(T,X)$ has (GC).

Corollary

Assume: X has (GC) and (\ast); π is a polyhedral lattice norm on \mathbb{R}^n; K is a Hausdorff compact. Let either $\dim X < \infty$ or π is "handy". Then the π-center map $E_{\pi}: C(K,X)^n \to C(K,X)$ is (nonempty-valued and) Hausdorff continuous.

Assume: X has (GC) and (\ast); K is a Hausdorff compact. Then, for each $m \in \mathbb{N}$, the Chebyshev center map $A \mapsto Z(A)$ of $C(K,X)$ is H-continuous on the family $P_m := \{ A \subset C(K,X) : \text{card} A \leq m \}$.

L. Veselý

Best approximation and opt. location in polyhedral B. spaces
Theorem (easy, too)

If X has (GC) and ($P\Delta$), then $C_b(T, X)$ has (GC).

Theorem

Assume: X has (GC) and (\ast); π is a polyhedral lattice norm on \mathbb{R}^n; K is a Hausdorff compact. Let either $\dim X < \infty$ or π is “handy”. Then the π-center map

$$E_\pi : C(K, X)^n \to 2^{C(K,X)}$$

is (nonempty-valued and) Hausdorff continuous.
Theorem (easy, too)

If X has (GC) and $(P\Delta)$, then $C_b(T, X)$ has (GC).

Theorem

Assume: X has (GC) and $(*);$ π is a polyhedral lattice norm on $\mathbb{R}^n;$ K is a Hausdorff compact. Let either $\dim X < \infty$ or π is “handy”. Then the π-center map

$$E_\pi : C(K, X)^n \to 2^{C(K,X)}$$

is (nonempty-valued and) Hausdorff continuous.

Corollary

Assume: X has (GC) and $(*);$ K is a Hausdorff compact. Then, for each $m \in \mathbb{N}$, the Chebyshev center map $A \mapsto Z(A)$ of $C(K, X)$ is H-continuous on the family $\mathcal{P}_m := \{ A \subset C(K, X) : \text{card } A \leq m \}$.
Thank you for your attention!